Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

TISrPS_{4}, the first strontium quaternary thiophosphate

Imane Belkyal, ${ }^{\text {a* }}$ Mohamed El Azhari, ${ }^{\text {a }}$ Christian Näther, ${ }^{\text {b }}$ Wolfgang Bensch ${ }^{\text {b }}$ and Wulf Depmeier ${ }^{\text {c }}$
${ }^{\text {a }}$ Laboratoire Matière Condensée et Nanostructures, Faculté des Sciences et Techniques, Département des Sciences Chimiques, Université Cadi Ayyad, BP 549, Marrakech, Morocco, ${ }^{\mathbf{b}}$ Institut für Anorganische Chemie, Universität Kiel, Olshausenstrasse 40, 24098 Kiel, Germany, and ${ }^{\text {'Institut für Geowissenschaften - }}$ Kristallographie, Universität Kiel, Olshausenstrasse 40, 24098 Kiel, Germany Correspondence e-mail: emib1@menara.ma

Received 21 April 2007; accepted 24 May 2007
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{S}-\mathrm{P})=0.003 \AA$; R factor $=0.033 ; w R$ factor $=0.084 ;$ data-to-parameter ratio $=22.8$.

The new thallium(I) strontium(II) thiophosphate TlSrPS_{4} is isostructural with TlPbPS_{4} and exhibits a layered structure. Each layer is composed of $\left[\left(\mathrm{SrS}_{6}\right)\left(\mathrm{TlS}_{6}\right)\right]_{\mathrm{n}}$ zigzag chains, which consist of irregular trigonal prisms centred alternately by Tl and Sr atoms. Adjacent $\left[\mathrm{TlS}_{6}\right]$ and $\left[\mathrm{SrS}_{6}\right]$ prisms share common triangular faces to form one-dimensional chains parallel to [001]. These chains are connected along [010] by sharing edges of rectangular faces in such a way that the apical edges of the prisms point alternately up and down, forming parallel zigzag layers. The layers are stacked perpendicular to the crystallographic a axis and are held together by $\left[\mathrm{PS}_{4}\right]$ tetrahedra.

Related literature

Background information on related structures can be found in Belkyal, El Azhari, Bensch \& Depmeier (2006), CarrilloCabrera et al. (1995) and Becker et al. (1987).

For related literature, see: Belkyal et al. (2005); Belkyal, El Azhari, Wu et al. (2006); Hadenfeldt \& Hoedel (1996); Horn \& Sterzel (1973); Johri et al. (1970); Shannon (1976).

Experimental

Crystal data
$\begin{array}{ll}\mathrm{TlSrPS}_{4} & \text { Orthorhombic, Pnma } \\ M_{r}=451.20 & a=12.2985(8) \AA\end{array}$
$M_{r}=451.20$
$b=6.6003(6) \AA$
$c=8.7957(6) \AA$
$V=713.98(9) \AA^{3}$
$Z=4$

> Mo $K \alpha$ radiation $\mu=31.28 \mathrm{~mm}^{-1}$
> $T=293(2) \mathrm{K}$
> $0.08 \times 0.07 \times 0.06 \mathrm{~mm}$

Data collection
Stoe IPDS diffractometer Absorption correction: numerical (X-SHAPE; Stoe \& Cie, 1998)
$T_{\text {min }}=0.018, T_{\text {max }}=0.111$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.084$
$S=1.02$
935 reflections

6570 measured reflections 935 independent reflections 780 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.099$

41 parameters

$\Delta \rho_{\text {max }}=1.46$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-2.30 \mathrm{e}^{-3}$

Data collection: IPDS (Stoe \& Cie, 1998); cell refinement: IPDS; data reduction: $I P D S$; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and BS (Version 1.51; Ozawa \& Kang, 2004); software used to prepare material for publication: SHELXL97.

This work was supported by the DFG (Deutsche Forschungsgemeinschaft) through operating grant No. De 412/ 25-1 and by the CNRST (Centre National pour la Recherche Scientifique et Technique), Morocco. The authors are most grateful to Dr C. Teske for the preparation of $\mathrm{Tl}_{2} \mathrm{~S}$.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BR2039).

References

Becker, R., Brockner, W. \& Eisenmann, B. (1987). Z. Naturforsch. Teil A, 42, 1309-1312.
Belkyal, I., El Azhari, M., Bensch, W. \& Depmeier, W. (2006). Acta Cryst. E62, i210-i212.
Belkyal, I., El Azhari, M., Wu, Y., Bensch, W., Hesse, K.-F. \& Depmeier, W. (2005). Z. Kristallogr. New Cryst. Struct. 220, 127-128.

Belkyal, I., El Azhari, M., Wu, Y., Bensch, W., Hesse, K.-F. \& Depmeier, W. (2006). Solid State Sci. 8, 59-63.

Carrillo-Cabrera, W., Peters, K., Schnering, H. G., Menzel, F. \& Brockner, W. (1995). Z. Anorg. Allg. Chem. 621, 557-561.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Hadenfeldt, C. \& Hoedel, D. (1996). Z. Anorg. Allg. Chem. 622, 1495-1500.
Horn, J. \& Sterzel, W. (1973). Z. Anorg. Allg. Chem. 399, 211-218.
Johri, K. N., Kaushik, N. K. \& Singh, K. (1970). J. Therm. Anal. 2, 37-52.
Ozawa, T. C. \& Kang, S. J. (2004). J. Appl. Cryst. 37, 679. http:// www.softbug.com/toycrate/bs/
Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (1998). IPDS (Version 2.98), X-SHAPE (Version 1.03) and X-RED (Version 1.11). Stoe \& Cie, Darmstadt, Germany.

supplementary materials

Acta Cryst. (2007). E63, i166 [doi:10.1107/S1600536807025445]

TISrPS_{4}, the first strontium quaternary thiophosphate

I. Belkyal, M. El Azhari, C. Näther, W. Bensch and W. Depmeier

Comment

In our effort to extend the range of quaternary ortho-thiophosphate, $\mathrm{AMPS}_{4}(\mathrm{~A}=\mathrm{K}, \mathrm{Rb}, \mathrm{Cs}, \mathrm{Tl}$ and M : divalent metal) (Belkyal et al., 2005 and 2006a), the new compound TlSrPS 4 was obtained. Neither the structure nor the properties of strontium quaternary thiophosphates have been known until now. The title compound crystallizes in the centrosymmetric space group Pnma and is isostructural with TlPbPS_{4} (Belkyal et al., 2006b) and is closely related to those of the other thallium tetrathiophosphate namely TlEuPS_{4} (Carrillo-Cabrera et al., 1995) and TlSnPS_{4} (Becker et al., 1987).

The asymmetric unit of the title compound is plotted on Fig. 1. The structure of TlSrPS_{4} has a pseudo two-dimensional character. Looking down the c axis (Fig. 2), one can see layers of $\left[\left(\mathrm{SrS}_{6}\right)\left(\mathrm{TlS}_{6}\right)\right]_{\mathrm{n}}$ separated by P^{5+} cations. These geometric parameters are in agreement with values reported in the literature for TlPbPS_{4} (Belkyal et al., 2006b) or TlEuPS 4 (CarrilloCabrera et al., 1995).

The layers are composed of wedge-like irregular trigonal prisms alternately centred by Tl and Sr atoms. Adjacent prisms TlS_{6} and SrS_{6} share edges of rectangular faces in such a way that edges of the prisms point alternately up and down forming one-dimensional parallel zigzag chains along [010] (Fig. 3). These zigzag chains are joined together by sharing the triangular faces along [001], in such way that the TlS_{6} prism of one chain shares triangular face with SrS_{6} prism of the other chain. Thus, the layers formed are connected by $\left[\mathrm{PS}_{4}\right]$ tetrahedra along [100]. The $\mathrm{P}-\mathrm{S}$ bonds, within the $\left[\mathrm{PS}_{4}\right]$ tetrahedra, are almost equidistant from 2.031 (3) to 2.044 (2) \AA. The average of these distances is in good agreement with those found in TlPbPS_{4} [Belkyal et al., 2006b] or TlEuPS 4 (Carrillo-Cabrera et al., 1995). The $\mathrm{Tl} — \mathrm{~S}$ bond lengths found in TlSrPS_{4} range from 3.268 (1) to 3.397 (3) \AA and compare very well with those reported for TlPbPS_{4} (Belkyal et al., 2006b). Whereas the Sr —S distances (2.984 (3) to 3,095 (2) \AA) are smaller than those found in the strontium ternary compound $\mathrm{Sr}_{2} \mathrm{P}_{2} \mathrm{~S}_{6}$ (Hadenfeldt \& Hoedel, 1996) (3,058(2)-3.200(1) \AA). This reduction is the result of the increase in the covalent character of the $\mathrm{Sr}-\mathrm{S}$ bond in TlSrPS_{4}. The same behavior was observed for the $\mathrm{Pb}-\mathrm{S}$ distances between TlPbPS_{4} (Belkyal et al., 2006b) and $\mathrm{Pb}_{2} \mathrm{P}_{2} \mathrm{~S}_{6}$ (Hadenfeldt \& Hoedel, 1996) The average $\mathrm{Tl}-\mathrm{S}$ and $\mathrm{Sr}-\mathrm{S}$ distances in TlSrPS_{4} match well with the sum of the ionic radii (Shannon, 1976).

Experimental

TlSrPS_{4} was prepared from a stochiometric mixture of $\mathrm{P}_{2} \mathrm{~S}_{5}(99,99 \%$, Alfa), $\mathrm{SrS}(99,9 \%, \mathrm{ABCR}), \mathrm{S}(99,99 \%$, Heraeus) and $\mathrm{Tl}_{2} \mathrm{~S}$. The latter was prepared by thermal decomposition of $\mathrm{Tl}_{2} \mathrm{CS}_{3}$ (Horn \& Sterzel, 1973; Johri et al., 1970) in argon atmosphere under reduced pressure at $\operatorname{Tmax}=523 \mathrm{~K}$. The reaction mixture was thoroughly mixed in a N_{2}-filled glove box and loaded into a quartz ampoule. After evacuation to $10^{-3} \mathrm{mbar}$ the ampoule was flame-sealed and placed in a computer controlled furnace. The sample was heated to 1200 K , kept at this temperature for 5 days, cooled to 400 K at a rate of $4.8^{\circ} \mathrm{K} / \mathrm{h}$, then turned off the furnace. After washing with ether transparent orange platelets were obtained. The compound is slightly air

supplementary materials

and moisture sensitive. An EDX analysis indicated the presence of all four elements ($\mathrm{Tl}, \mathrm{Sr}, \mathrm{P}, \mathrm{S}$) in an approximate atomic ratio of 1:1:1:4. The EDX analysis was performed using a Philips ESEM XL 30 scanning electron microscope equipped with an EDAX analyser.

Figures

Fig. 1. The asymmetric unit of the title compound, with anisotropic displacement parameters drawn at the 50% probability level.

Fig. 2. Extended structure of TlSrPS_{4} projected along [001].

Thallium strontium tetrathiophosphate

Crystal data

TlSrPS_{4}
$M_{r}=451.20$
Orthorhombic, Pnma
Hall symbol: -P 2ac 2n
$a=12.2985$ (8) \AA
$b=6.6003$ (6) \AA
$c=8.7957(6) \AA$
$V=713.98(9) \AA^{3}$
$Z=4$

Data collection

Stoe IPDS
diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
$F_{000}=792$
$D_{\mathrm{x}}=4.198 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K α radiation
$\lambda=0.71073 \AA$
Cell parameters from 935 reflections
$\theta=2.9-27.9^{\circ}$
$\mu=31.28 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Platelet, orange
$0.08 \times 0.07 \times 0.06 \mathrm{~mm}$
$T=293(2) \mathrm{K}$
φ scans
Absorption correction: numerical
(X-SHAPE; Stoe \& Cie, 1998)
$T_{\text {min }}=0.018, T_{\text {max }}=0.111$
6570 measured reflections

$$
\begin{aligned}
& \theta_{\max }=27.9^{\circ} \\
& \theta_{\min }=2.9^{\circ} \\
& h=-15 \rightarrow 16 \\
& k=-8 \rightarrow 8 \\
& l=-11 \rightarrow 11
\end{aligned}
$$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.084$
$S=1.03$
935 reflections
41 parameters

Secondary atom site location: difference Fourier map

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0408 P)^{2}+3.1599 P\right]
$$

where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\max }=1.46 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-2.29$ e \AA^{-3}
Extinction correction: SHELXL97 (Sheldrick, 1997)
Extinction coefficient: 0.0033 (3)

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F , with F set to zero for negative F^{2}. The threshold expression of $\mathrm{F}^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

	x	y	z	$U_{\mathrm{iso}}{ }^{*} / U_{\mathrm{eq}}$
T11	$0.3980(1)$	0.7500	$0.6257(1)$	$0.031(1)$
Sr1	$0.6395(1)$	0.2500	$0.8923(1)$	$0.016(1)$
P1	$0.3468(2)$	0.2500	$0.8764(2)$	$0.012(1)$
S1	$0.4445(2)$	0.2500	$0.6903(3)$	$0.020(1)$
S2	$0.4310(2)$	0.2500	$1.0761(2)$	$0.018(1)$
S3	$0.2472(1)$	$0.0025(2)$	$0.8659(2)$	$0.018(1)$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
$\mathrm{Tl}(1)$	$0.035(1)$	$0.036(1)$	$0.022(1)$	0.000	$-0.003(1)$	0.000
$\mathrm{Sr}(1)$	$0.015(1)$	$0.021(1)$	$0.013(1)$	0.000	$0.001(1)$	0.000

		$0.08(1)$	$0.013(1)$	0.000	$-0.001(1)$	0.000
$\mathrm{P}(1)$	$0.015(1)$	$0.008(1)$	$0.013(1)$	0.000	$0.002(1)$	0.000
$\mathrm{~S}(1)$	$0.021(1)$	$0.026(1)$	$0.011(1)$	0.000	$-0.002(1)$	0.000
$\mathrm{~S}(2)$	$0.016(1)$	$0.027(1)$	$0.025(1)$	$-0.004(1)$	$-0.007(1)$	$0.002(1)$

Geometric parameters ($\AA,{ }^{\circ}$)

Tl1-Sr1 ${ }^{\text {i }}$	4.2645 (9)
Sr1-S1	2.984 (3)
Sr1-S2	3.031 (2)
Sr1—S3 ${ }^{\text {ii }}$	3.0406 (18)
Sr1—S3 $3^{\text {iii }}$	3.0406 (18)
Sr1—S3 ${ }^{\text {iv }}$	3.0951 (18)
Sr1—S3 ${ }^{\text {v }}$	3.0951 (18)
Sr1—S2 $2^{\text {iii }}$	3.4234 (7)
Sr1-S2 ${ }^{\text {i }}$	3.4234 (7)
Srl-P1 ${ }^{\text {iv }}$	3.476 (2)
Sr1-P1	3.603 (2)
S1-Sr1-S2	68.77 (6)
S1—Sr1—S3 ${ }^{\text {ii }}$	141.70 (4)
S2—Sr1—S3 ${ }^{\text {ii }}$	90.84 (5)
S1—Sr1—S3 ${ }^{\text {iii }}$	141.70 (4)
S2-Sr1—S3 ${ }^{\text {iii }}$	90.84 (5)
S3 ${ }^{\text {ii }}-\mathrm{Sr} 1-\mathrm{S} 3{ }^{\text {iii }}$	66.47 (6)
S1—Sr1—S3 ${ }^{\text {iv }}$	84.67 (5)
S2-Sr1—S3 ${ }^{\text {iv }}$	138.88 (4)
S3 ${ }^{\text {ii }}$-Sr1—S3 ${ }^{\text {iv }}$	127.32 (3)
S3 ${ }^{\text {iii }}-\mathrm{Sr} 1-\mathrm{S}^{\text {iv }}$	91.588 (16)
S1-Sr1-S3 ${ }^{\text {v }}$	84.67 (5)
S2-Sr1—S3 ${ }^{\text {V }}$	138.88 (4)
S3ii ${ }^{\text {ii }} \mathrm{Sr} 1-\mathrm{S} 3{ }^{\mathrm{v}}$	91.588 (16)
S3 ${ }^{\text {iiii }}$ - $\mathrm{Sr} 1-3^{\text {b }}$	127.32 (3)
$\mathrm{S} 3{ }^{\text {iv }}-\mathrm{Sr} 1-\mathrm{S} 3{ }^{\text {v }}$	63.71 (6)
S1—Sr1—S2iii	81.08 (4)
S2-Sr1—S2 ${ }^{\text {iii }}$	75.08 (4)
S3 ${ }^{\text {ii }}$-Sr1—S2 ${ }^{\text {iii }}$	125.99 (5)
S3 ${ }^{\text {iiii }}$ - Sr1—S2 ${ }^{\text {iii }}$	62.02 (5)
S3 ${ }^{\text {iv }}-\mathrm{Sr} 1-\mathrm{S} 2{ }^{\text {iii }}$	70.08 (5)
S3 ${ }^{\mathrm{v}}$-Sr1—S2 ${ }^{\text {iii }}$	132.59 (5)
S1—Sr1—S2 ${ }^{\text {i }}$	81.08 (4)
$\mathrm{S} 2-\mathrm{Sr} 1-\mathrm{S} 2{ }^{\text {i }}$	75.08 (4)
S3ii $-\mathrm{Sr} 1-\mathrm{S} 2{ }^{\text {i }}$	62.02 (5)

S3 ${ }^{\text {iii }}$ - $\mathrm{Sr} 1-\mathrm{S} 2{ }^{\text {i }}$	125.99 (5)	$\mathrm{S} 3^{\text {vi }}-\mathrm{P} 1-\mathrm{Srl}{ }^{\text {vii }}$	61.95 (7)
$\mathrm{S} 3{ }^{\text {iv }}-\mathrm{Sr} 1-\mathrm{S} 2{ }^{\text {i }}$	132.59 (5)	$\mathrm{S} 1-\mathrm{P} 1-\mathrm{Sr} 1$	55.92 (9)
S3 ${ }^{\text {v }}$ - Sr $1-\mathrm{S} 2{ }^{\text {i }}$	70.08 (5)	S2-P1-Sr1	57.23 (9)
S2 ${ }^{\text {iii }}$-Sr1—S $2^{\text {i }}$	149.15 (8)	S3-P1-Sr1	126.91 (7)
$\mathrm{S} 1-\mathrm{Sr} 1-\mathrm{P} 1^{\text {iv }}$	100.63 (6)	S3 ${ }^{\text {vi }}$-P1—Sr1	126.90 (7)
S 2 - $\mathrm{Sr} 1-\mathrm{P} 1^{\text {iv }}$	169.40 (6)	Sr1 ${ }^{\text {vii }} \mathrm{P} 1$ - Sr 1	139.40 (6)
S3 ${ }^{\text {ii }}$-Sr1—P1 ${ }^{\text {iv }}$	98.01 (5)	P1-S1-Sr1	89.77 (10)
S3iii ${ }^{\text {iii }} \mathrm{Sr} 1-\mathrm{P} 1^{\text {iv }}$	98.01 (5)	P1-S2-Sr1	88.31 (10)
S3 ${ }^{\text {iv }}-\mathrm{Sr} 1-\mathrm{P} 1^{\text {iv }}$	35.64 (3)	P1-S2-Sr1ii	86.63 (5)
S3 ${ }^{\mathrm{v}}$ - $\mathrm{Sr} 1-\mathrm{P} 1^{\text {iv }}$	35.64 (3)	Sr1—S2—Sr1 ${ }^{\text {iii }}$	104.92 (4)
S2 ${ }^{\text {iiii }}$-Sr1—P1 ${ }^{\text {iv }}$	103.94 (4)	P1-S2-Sr1 ${ }^{\text {i }}$	86.63 (5)
$\mathrm{S} 2{ }^{\mathrm{i}}-\mathrm{Sr} 1-\mathrm{P} 1^{\text {iv }}$	103.94 (4)	Sr1-S2-Sr1 ${ }^{\text {i }}$	104.92 (4)
S1-Sr1-P1	34.31 (6)	Sr1 ${ }^{\text {iii }}$-S2-Sr1 ${ }^{\text {i }}$	149.15 (8)
S 2 - Sr1-P1	34.46 (5)	P1-S3-Sr1 ${ }^{\text {iii }}$	97.57 (8)
S3 ${ }^{\text {iii }} \mathrm{Sr} 1 — \mathrm{P} 1$	119.03 (5)	P1-S3-Sr1 ${ }^{\text {vii }}$	82.41 (7)
S3 ${ }^{\text {iii }}$-Sr1—P1	119.03 (5)	Sr1 ${ }^{\text {iii }}$-S3-Sr1 $1^{\text {vii }}$	177.14 (7)

Symmetry codes: (i) $-x+1,-y+1,-z+2$; (ii) $-x+1, y+1 / 2,-z+2$; (iii) $-x+1,-y,-z+2$; (iv) $x+1 / 2, y,-z+3 / 2$; (v) $x+1 / 2,-y+1 / 2,-z+3 / 2$; (vi) $x,-y+1 / 2, z$; (vii) $x-1 / 2, y,-z+3 / 2$.

supplementary materials

Fig. 1

Fig. 2

Fig. 3

